Numerical and Experimental Investigation of Erosive Wear of Ti-6Al-4V Alloy

Author:

Mohammadi Bijan1,Khoddami AmirSajjad2,Pourhosseinshahi Mohammadreza2

Affiliation:

1. School of Mechanical Engineering, Iran University of Science and Technology, P.O. Box 16765-163, Narmak, Tehran 16846, Iran e-mail:

2. School of Mechanical Engineering, Iran University of Science and Technology, Narmak, Tehran 16846, Iran e-mail:

Abstract

Solid particle erosion (SPE) as a common damage mechanism in industrial applications can reduce the effective operation of components or contribute to failure. However, it has beneficial usages in manufacturing processes, especially in abrasive sandblasting and waterjet cutting. The aim of this paper is an investigation of erosive behavior of Ti-6Al-4V alloy through numerical and experimental approaches. A three-dimensional finite element (FE) model is developed using the representative volume element (RVE) to simulate multiple particles impact on Ti-6Al-4V target. Failure and plastic behavior of the target surface due to particles impact is described by Johnson-Cook constitutive equations. Furthermore, erosive behavior of the alloy is experimentally researched by multiple SPE tests. Verification of the implemented approach is studied by comparing the results of the FE model and the SPE experiments. Effects of particles impact angle considering Johnson-Cook coefficient values and particles velocity on erosive behavior of Ti-6Al-4V are also studied. Both numerical and experimental results show a maximum erosion rate of the alloy at an impact angle of 45 deg for spherical sand particles with a diameter of 100 µm. According to the scanning electron microscopy (SEM) images, the erosion process involves both ductile and brittle mechanisms at this angle.

Publisher

ASME International

Subject

Surfaces, Coatings and Films,Surfaces and Interfaces,Mechanical Engineering,Mechanics of Materials

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3