Liapunov Stability Analysis of Elastic Shaft-Rigid Disk-Bearing Systems

Author:

Huang H.-Y.1,Schlack A. L.1

Affiliation:

1. Department of Engineering Mechanics, University of Wisconsin-Madison, Madison, WI 53706

Abstract

A general method of analysis based on Liapunov’s direct method is presented for studying the dynamic stability of elastic shaft-rigid disk-bearing systems. A model comprised of a rigid disk rigidly attached at an arbitrary location along a flexible, rotating shaft which is mounted on two eight-component end bearings is used to develop stability criteria involving system stiffness and damping parameters. It is quantitatively shown by means of graphs for typical cases how the instability regions are reduced by (a) increasing the shaft dimensionless stiffness parameters, (b) increasing the bearing direct stiffness and damping parameters, (c) decreasing the bearing cross-coupling stiffness and damping parameters, (d) decreasing the mass ratio of the disk, and (e) increasing the disk’s radius ratio. These graphs present typical examples of the types of design information available to engineers through the equations provided in this paper. These graphs also verify that a two-modal term (N = 2) expansion is normally adequate to model the system deformations since the curves are not significantly altered by adding another term (N = 3) to the expansion. The critical value of the shaft dimensionless stiffness parameters is also studied.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3