New Design and Prototype of Two Degrees-of-Freedom Planar Parallel Manipulator for Use in Creating an Infinite 3D Printer

Author:

De La Melena Miguel1,Duan Shawn1

Affiliation:

1. Saint Martin's University Department of Mechanical Engineering, , Lacey, WA 98503

Abstract

Abstract This paper presents a novel two degrees-of-freedom planar parallel manipulator (PPM) designed for infinite-axis 3D printing, alongside tools for facilitating future design iterations. Unlike traditional gantry-supported designs used in infinite-axis 3D printing, which impose significant mass movement requirements, the examined new design prioritizes reducing overall weight to enhance speed potential at the cost of a reduced work area. In this innovative approach, the PPM effectively reduces weight by decoupling the motion of the hot end from that of the motor. Motors are attached to the frame, controlling a system of pulleys, and connecting arms to drive the hot-end's motion. Due to the length of the arms, the hot end will be unable to fully explore the entire printing plane. Verification of the angled PPM for 3D printing involved developing kinematic and dynamic equations, conducting finite element analysis on critical components, and testing a completed prototype. A metaheuristic optimization method was employed to derive optimal design parameters, focusing on optimizing the arm length of the connectors while maximizing dynamic performance. Considerations included the usable workspace and the angle between the connecting arm and end-effector. The final prototype validated the stability and rigidity of the PPM during movement, indicating its viability for 3D printing. The results presented in this paper demonstrate the capabilities of using an angled PPM in infinite 3D printing, providing fundamental knowledge crucial for future designs involving this innovative mechanism.

Publisher

ASME International

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3