Simulation of Solar Thermo-Chemical Hydrogen Production Techniques

Author:

Almodaris Mohamed1,Khorasani Sara1,Abraham Jocin James1,Ozalp Nesrin1

Affiliation:

1. Texas A&M University at Qatar, Doha, Qatar

Abstract

This paper presents material and energy process-step models of hydrogen production via concentrated solar energy using Aspen Plus®. The paper provides a thorough comparison of solar cracking and solar reforming of methane processes against conventional steam methane reforming. The material and energy balances show that solar cracking is the most environmentally friendly hydrogen production technique. Some of the primary advantages of solar cracking include (1) elimination of CO2 emission, (2) elimination of costs associated with CO2 sequestration, transportation, and storage, and (3) generation of two commercially viable products, namely carbon black and hydrogen which can be used both as a fuel and a commodity. Considering the hydrogen shortage for different hydrogenation and fuel upgrading processes that the petrochemical industry is facing today, hydrogen production from solar cracking may offer an alternative solution. Therefore, it is important to find less energy intensive and more environmentally friendly hydrogen production techniques to meet the demand of industry. The results show that solar cracking is a more environmentally friendly and commercially competitive process compared to solar reforming and steam reforming considering that it produces virtually no carbon dioxide, but produces the commercially viable carbon black as a by-product.

Publisher

ASMEDC

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Computational fluid dynamics study of hydrogen production using concentrated solar radiation as a heat source;Energy Conversion and Management;2023-01

2. 5 Hydrothermal Gasification;Chemical Energy from Natural and Synthetic Gas;2017-03-16

3. Effect of reactor geometry on the temperature distribution of hydrogen producing solar reactors;International Journal of Hydrogen Energy;2012-11

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3