Development of the Thermal Flash Method for Characterization of Carbon Nanofibers

Author:

Mahanta Nayandeep K.1,Abramson Alexis R.1

Affiliation:

1. Case Western Reserve University, Cleveland, OH

Abstract

The transient thermal flash technique, originally developed for testing low thermal diffusivity micro/nanofibers, was implemented for measuring the thermal conductivity of vapor-grown carbon nanofibers. The present technique uses a microfabricated strip of gold, which acts both as a heater and a temperature sensor. The modifications were validated against commercially available carbon fibers (Pyrograf® – I from Applied Sciences, Inc. and Mitsubishi K13D2U) and the results obtained were seen to match values previously reported in the literature. The carbon nanofibers reported in this article were also obtained from Applied Sciences, Inc. and are known as PR-25, belonging to the Pyrograf® – III family of nanofibers. The thermal conductivities calculated based on the experimentally determined values of diffusivity along with the specific heat capacity and density of graphite were around 1100 W/m-K and 1700 W/m-K, respectively for the nanofibers heat treated to 1100 °C and 3000 °C.

Publisher

ASMEDC

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3