Affiliation:
1. Bureau of Alcohol, Tobacco, and Firearms, Fire Research Laboratory, Rockville, MD 20850
2. Building and Fire Research Laboratory, National Institute of Standards and Technology, Gaithersburg, MD 20899-8663
Abstract
The Planck mean absorption coefficient, ap, has been calculated for HBr, HCl, and HF over a temperature range from 300 K–2300 K using data from the 1996 edition of the HITRAN molecular database. Plots of ap versus temperature showed monotonically decreasing behavior over this temperature range, with peak values at 300 K of 45.9 (atm-m)−1, 5.3 (atm-m)−1, and 1.95 (atm-m)−1 for HF, HCl, and HBr, respectively. The magnitude of these values suggests that HBr, HCl, and HF can significantly impact calculations of radiative transfer in flames containing these species. Two sets of additional calculations were performed for CO to validate the methodology used for calculation of ap for HBr, HF, and HCl. In the first approach, which employed the narrow band model RADCAL, the calculation procedure was similar to that of the present calculations. The second approach utilized tabulated values of the integrated intensity for each CO band and an average value of the Planck function within each band. Results from the three methods showed general agreement. Polynomial expressions are provided as fits to ap as a function of temperature for HBr, HCl, HF, and CO.
Subject
Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science
Cited by
15 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献