Performance of a Polymer Electrolyte Membrane Fuel Cell System Fueled With Hydrogen Generated by a Fuel Processor

Author:

Jannelli E.1,Minutillo M.1,Galloni E.1

Affiliation:

1. Department of Industrial Engineering, University of Cassino, Via G. Di Biasio 43, 03043 Cassino (FR), Italy

Abstract

Fuel cells, which have seen remarkable progress in the last decade, are being developed for transportation, as well as for both stationary and portable power generation. For residential applications, the fuel cells with the largest market segment are the proton exchange membrane fuel cells, which are suitable for small utilities since they offer many advantages: high power density, small footprint, low operating temperature, fast start-up and shutdown, low emissions, and quiet operation. On the other hand, polymer electrolyte membrane (PEM) fuel cells require high purity hydrogen as fuel. Currently, the infrastructure for the distribution of hydrogen is almost nonexistent. In order to use PEM fuel cell technology on a large scale, it is necessary to feed them with conventional fuel such as natural gas, liquefied petroleum gas, gasoline or methanol to generate hydrogen in situ. This study aims to predict the performance of a PEM fuel cell integrated with a hydrogen generator based on steam reforming process. This integrated power unit will be able to provide clean, continuous power for on-site residential or light commercial applications. A precommercial natural gas fuel processor has been chosen as hydrogen generator. This fuel processor contains all the elements—desulphurizer, steam reformer, CO shift converter, CO preferential oxidation (PROX) reactor, steam generator, burner, and heat exchanger—in one package. The reforming system has been modeled with the ASPEN PLUS code. The model has a modular structure in order to allow performance analysis, component by component. Experimental investigations have been conducted to evaluate the performance of the fuel cell fed with the reformate gas, as produced by the reformer. The performance of the integrated system reformer/fuel cell has been evaluated both using the numerical results of the reformer modeling and the experimental data of the PEM fuel cell.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3