LES of the Slipstream of a Rotating Train

Author:

Hemida Hassan1,Gil Nahia2,Baker Chris1

Affiliation:

1. School of Civil Engineering, University of Birmingham, B15 2TT, UK

2. School of Electrical Engineering, University of Birmingham, B15 2TT, UK

Abstract

The slipstream of a high-speed train was investigated using large-eddy simulation (LES). The subgrid stresses were modeled using the standard Smagorinsky model. The train model consisted of a four-coach of a 1/25 scale of the ICE2 train. The model was attached to a 3.61 m diameter rotating rig. The LES was made at two Reynolds numbers of 77,000 and 94,000 based on the height of the train and its speed. Three different computational meshes were used in the simulations: course, medium and fine. The coarse, medium, and fine meshes consisted of 6×106, 10×106, and 15×106 nodes, respectively. The results of the fine mesh are in fairly agreement with the experimental data. Different flow regions were obtained using the LES: upstream region, nose region, boundary layer region, intercarriage gap region, tail region, and wake region. Localized velocity peak was obtained near the nose of the train. The maximum and minimum pressure values are also noticed near to the nose tip. Coherent structures were born at the nose and roof of the train. These structures were swept by the radial component of the velocity toward the outer side of the train. These structures extended for a long distance behind the train in the far wake flow. The intercarriage gaps and the underbody complexities, in the form of supporting cylinders, were shown to have large influences on the slipstream velocity. The results showed that the slipstream velocity is linearly proportional to the speed of the train in the range of our moderate Reynolds numbers.

Publisher

ASME International

Subject

Mechanical Engineering

Reference20 articles.

1. Pope, C. , 2006, “Safety of Slipstreams Effects Produced by Trains,” A Report Prepared by Mott Macdonald, Ltd., for RSSB.

2. RSSB, 2006, “Slipstream Risks: Phase 1 (a) Commentary on Existing GB Position,” http://www.rssb.co.uk/

3. Figura-Hary, G. I. , 2007, RSSB Slipstream Safety Analysis of Existing Experimental Data on Train Slipstreams Including the Effects on Pushchairs.

4. A Study of the Slipstreams of High-Speed Passenger Trains and Freight Trains;Sterling;Proc. Inst. Mech. Eng., F J. Rail Rapid Transit

5. The Slipstream and Wake of a High Speed Train;Baker;Proc. Inst. Mech. Eng., F J. Rail Rapid Transit

Cited by 31 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3