A Method for Three-Dimensional Navier–Stokes Simulations of Large-Scale Regions of the Human Lung Airway

Author:

Walters D. Keith1,Luke William H.1

Affiliation:

1. Department of Mechanical Engineering, Mississippi State University, CAVS SimCenter, P.O. Box ME, Mississippi State, MS 39762

Abstract

A new methodology for CFD simulation of airflow in the human bronchopulmonary tree is presented. The new approach provides a means for detailed resolution of the flow features via three-dimensional Navier–Stokes CFD simulation without the need for full resolution of the entire flow geometry, which is well beyond the reach of available computing power now and in the foreseeable future. The method is based on a finite number of flow paths, each of which is fully resolved, to provide a detailed description of the entire complex small-scale flowfield. A stochastic coupling approach is used for the unresolved flow path boundary conditions, yielding a virtual flow geometry that allows accurate statistical resolution of the flow at all scales for any set of flow conditions. Results are presented for multigenerational lung models based on the Weibel morphology and the anatomical data of Hammersley and Olson (1992, “Physical Models of the Smaller Pulmonary Airways,” J. Appl. Physiol., 72(6), pp. 2402–2414). Validation simulations are performed for a portion of the bronchiole region (generations 4–12) using the flow path ensemble method, and compared with simulations that are geometrically fully resolved. Results are obtained for three inspiratory flowrates and compared in terms of pressure drop, flow distribution characteristics, and flow structure. Results show excellent agreement with the fully resolved geometry, while reducing the mesh size and computational cost by up to an order of magnitude.

Publisher

ASME International

Subject

Mechanical Engineering

Cited by 42 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3