The Influence of AGR Gas Carburisation on the Creep and Fracture Properties of Type 316H Stainless Steel

Author:

Nasser Mustafa1,Davies Catrin M.1,Nikbin Kamran1

Affiliation:

1. Imperial College London, London, UK

Abstract

Defects in the UK’s AGR nuclear reactors have been historically found in superheater regions of the boilers. These components are fabricated from type 316H austenitic stainless steel and operate in carbon dioxide gas coolant environments under creep conditions, at temperatures up to 550°C. As a result, some components maybe carburised throughout their life resulting in the formation of a hardened outer surface layer. This layer results from interstitial carbon diffusion and is thought to impact on the creep, creep-fatigue and fracture properties of 316H. Carburisation is currently unaccounted for within high temperature structural integrity assessment procedures. It is essential that carburisation and resulting damage mechanisms are well understood in order to accurately predict the failure of components. This paper aims to investigate the effect of AGR gas carburisation on the creep and fracture properties of type 316H stainless steel. Specimens have been preconditioned within a simulated AGR gas environment. The presence of carburisation has been confirmed through metallographic examination, hardness testing and surface analysis techniques. A series of constant load high-temperature creep tests have been conducted on preconditioned specimens. Compared to as-received material, carburised specimens displayed a significant reduction in creep rupture time with cracking of the outer carburised layer initiating creep crack growth. This phenomenon is seen to occur at very low strains and has been confirmed through interrupted creep testing. The substantial reduction in creep rupture time is postulated to result from embrittlement of the carburised material owing to strong precipitation of carbides along grain boundaries. It is concluded that carburisation can lead to a severe reduction in creep rupture life in test conditions; the possible implications of this with regards to plant conditions are discussed.

Publisher

American Society of Mechanical Engineers

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3