Improvement of Tightening Accuracy of Torque Control Method by Taking Account Geometric Errors in Threaded Fasteners

Author:

Fukuoka Toshimichi1,Nakano Keisuke1

Affiliation:

1. Kobe University, Kobe, Japan

Abstract

Torque control method is commonly used when tightening bolted joints because of its easy operation. However, the method involves an essential problem of fairly large scatter in bolt preloads. It has been reported that even if the same torque is applied, bolt preloads show a considerable scatter, e.g., ranging from 25% to 35%. A scatter in coefficients of friction on nut bearing surface and thread pressure flank is a primary source of bolt preload scatter. Meanwhile, the effect of Equivalent Friction Diameter at the bearing surfaces of nut and bolt head cannot be ignored. The scatter in Equivalent Friction Diameter is caused by imperfect geometry, i.e., the flatness deviation at the bearing surfaces. In this paper, the magnitudes of Equivalent Friction Diameter are quantitatively evaluated by FEA, using the experimental data of flatness deviation measured for a number of commercial nuts and bolts. It is shown that the bolt preload is likely to be scattered by as much as plus minus 10% of the target value, owing to the flatness deviation. Based on the comprehensive calculations by considering the imperfect geometry, a strategy to effectively suppress the bolt preload scatter is proposed.

Publisher

American Society of Mechanical Engineers

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. References;The Mechanics of Threaded Fasteners and Bolted Joints for Engineering and Design;2023

2. Mechanics of the tightening process of threaded fasteners;The Mechanics of Threaded Fasteners and Bolted Joints for Engineering and Design;2023

3. New Bolt Tightening Method with High Accuracy Utilizing Real-time Measurement of Nut Factor;Marine Engineering;2018-07-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3