Three-Dimensional Finite Element Analyses of Compact Tension Specimens of Irradiated Zr-2.5Nb Materials Using Submodeling

Author:

Sung Shin-Jang1,Pan Jwo1,Lam Poh-Sang2,Scarth Douglas A.3

Affiliation:

1. University of Michigan, Ann Arbor, MI

2. Savannah River National Laboratory, Aiken, SC

3. Kinectrics, Toronto, ON, Canada

Abstract

In this paper, the crack tip stresses along the front of a crack in a compact tension (CT) specimen of irradiated Zr-2.5Nb material are investigated by three-dimensional finite element analyses using the submodeling technique. A parametric study on two-dimensional submodeling of a CT specimen was first conducted to determine the appropriate mesh near the crack tip of a global model and the appropriate size of a submodel. The results show that the collapsed elements should be used near the crack tip in a global model and the region of a submodel should at least enclose the plastic zone to achieve acceptable results. With the submodeling strategy, a three-dimensional finite element analysis of the CT specimen is conducted. The distributions of the opening stress and out-of-plane normal stress ahead of the front of a crack in the CT specimen are obtained. Based on the computational results with the hydride fracture stress of 750 MPa for both radial and circumferential hydrides, all radial hydrides ahead of the crack front and the circumferential hydrides in the middle portion of the specimen should fracture at the specimen load of 3,000 N. Circumferential hydrides near the free surfaces do not fracture and the size of the zone without fractured circumferential hydrides increases with the increasing radial distance to the crack front. The computational results also show the three-dimensional effects on the variation of the plastic zone size and shape along the crack front, that is different from the conventional understanding of a dog-bone shape where the plastic zone on the free surface follows that under plane stress conditions and the plastic zone near the middle portion of the crack front follows that under plane strain conditions.

Publisher

American Society of Mechanical Engineers

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3