Transient Heat Transfer Between a Semi-Infinite Hot Plate and a Flowing Cooling Liquid Film

Author:

Dorfman Abram1

Affiliation:

1. Department of Electrical Engineering and Computer Science, University of Michigan Ann Arbor, Ann Arbor, MI 48109-2122

Abstract

Heat transfer between a hot, semi-infinite plate and thin liquid film flowing over its surface is considered. As the plate is semi-infinite, the finite cooled portion of the plate and the temperature at the moving film front are time variable. The heat transfer is transient, as opposed to the usual quasi-steady process that exists when the plate is infinite. To investigate the transient heat transfer, solutions describing the temperature fields of the wet and dry portions of the plate are conjugated at the moving film front. The basic characteristics of transient cooling process are found to be governed by a dimensionless parameter named the Leidenfrost number, which is the ratio of the Biot number and the square of the Peclet number. The plate temperatures at the moving front, the film velocity, and the time required to reach the wetting temperature are calculated.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Cited by 28 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Simulation Analysis of Temperature Field of Tinplate in the Quenching;International Journal of Simulation Modelling;2023-03-15

2. Introduction;Mathematical Engineering;2023

3. A peridynamic framework and simulation of non-Fourier and nonlocal heat conduction;International Journal of Heat and Mass Transfer;2018-03

4. Heat transfer during quenching of high temperature surface by the falling cryogenic liquid film;International Journal of Thermal Sciences;2017-04

5. References;Applications of Mathematical Heat Transfer and Fluid Flow Models in Engineering and Medicine;2016-12-02

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3