Numerical Simulation of Turbulent Pipe Flow for Water Hammer

Author:

Shamloo Hamid1,Mousavifard Maryam2

Affiliation:

1. Department of Civil Engineering, K.N. Toosi University of Technology, 470 Mirdamad Ave. West, Tehran 19697, Iran e-mail:

2. Department of Civil Engineering, 470 Mirdamad Ave. West, Tehran 19697, Iran e-mail:

Abstract

A numerical model of turbulent transient flow is used to study the dynamics of turbulence during different periods of water hammer in a polymeric pipe. The governing equations of the transient flow are solved by using the finite difference (FD) method, and the effects of viscoelasticity are modeled by means of a two-dimensional (2D) Kelvin–Voigt model. The experimental data with the Ghidaoui parameter P in the order of one are chosen in which the generated shear wave propagates toward the center of the pipe, while the pressure wave passes the length of the pipe. By studying the turbulence shear force during different times, it is shown that the turbulence structure changes considerably in the first cycle of water hammer. In the accelerated phases, the dominant feature is the creation of a shear wave near the wall, and in the decelerated phases the dominant feature is the propagation of the shear wave created in the accelerated phase.

Publisher

ASME International

Subject

Mechanical Engineering

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3