Simulation of a Chain of Collapsible Contracting Lymphangions With Progressive Valve Closure

Author:

Bertram C. D.1,Macaskill C.1,Moore J. E.2

Affiliation:

1. School of Mathematics and Statistics, University of Sydney, New South Wales 2006, Australia

2. Department of Biomedical Engineering, Texas A&M University, College Station, TX 77843-3120

Abstract

The aim of this investigation was to achieve the first step toward a comprehensive model of the lymphatic system. A numerical model has been constructed of a lymphatic vessel, consisting of a short series chain of contractile segments (lymphangions) and of intersegmental valves. The changing diameter of a segment governs the difference between the flows through inlet and outlet valves and is itself governed by a balance between transmural pressure and passive and active wall properties. The compliance of segments is maximal at intermediate diameters and decreases when the segments are subject to greatly positive or negative transmural pressure. Fluid flow is the result of time-varying active contraction causing diameter to reduce and is limited by segmental viscous and valvular resistance. The valves effect a smooth transition from low forward-flow resistance to high backflow resistance. Contraction occurs sequentially in successive lymphangions in the forward-flow direction. The behavior of chains of one to five lymphangions was investigated by means of pump function curves, with variation of valve opening parameters, maximum contractility, lymphangion size gradation, number of lymphangions, and phase delay between adjacent lymphangion contractions. The model was reasonably robust numerically, with mean flow-rate generally reducing as adverse pressure was increased. Sequential contraction was found to be much more efficient than synchronized contraction. At the highest adverse pressures, pumping failed by one of two mechanisms, depending on parameter settings: either mean leakback flow exceeded forward pumping or contraction failed to open the lymphangion outlet valve. Maximum pressure and maximum flow-rate were both sensitive to the contractile state; maximum pressure was also determined by the number of lymphangions in series. Maximum flow-rate was highly sensitive to the transmural pressure experienced by the most upstream lymphangions, suggesting that many feeding lymphatics would be needed to supply one downstream lymphangion chain pumping at optimal transmural pressure.

Publisher

ASME International

Subject

Physiology (medical),Biomedical Engineering

Reference18 articles.

1. The Resistance of a Lymph Node to Lymph Flow;Browse;Br. J. Surg.

2. Dynamics and Control of Transmicrovascular Fluid Exchange;Granger

3. A Computer Model of the Lymphatic System;Reddy;Comput. Biol. Med.

4. Intrinsic Pump-Conduit Behavior of Lymphangions;Quick;Am. J. Physiol. Regulatory Integrative Comp. Physiol.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3