Swirl Brake Effect on the Rotordynamic Stability of a Shrouded Impeller

Author:

Baskharone E. A.1

Affiliation:

1. Department of Mechanical Engineering, Texas A&M University, College Station, TX 77843

Abstract

The swirling motion of the shroud-to-housing leakage flow in pumps is known to have an adverse impact on the impeller rotordynamic stability. Swirl brakes, under such circumstances, would enhance the stability margin by reducing or, ideally, eliminating, the prerotation at the leakage passage inlet station. The numerical analysis outlined in this paper provides a quantitative means of predicting the effectiveness of such devices. The computed results also illustrate the mechanism with which the fluid/rotor interaction, with the aid of a typical brake, is altered towards relative overall rotordynamic stability. This is done through a comparative examination of the pressure perturbation distribution over the shroud surface for a wide range of backward and forward impeller-whirl frequencies. The conclusions in this study are consistent with recent experimental findings and have important design implications.

Publisher

ASME International

Subject

Mechanical Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Energy Transfer between a Fluid and a Rotor;Principles of Turbomachinery in Air-Breathing Engines;2023-10-19

2. Leakage and rotordynamic performance of a mixed labyrinth seal compared with that of a staggered labyrinth seal;Journal of Mechanical Science and Technology;2017-05

3. The Different Role of Cavitation on Rotordynamic Whirl Forces in Axial Inducers and Centrifugal Impellers;Fluid Dynamics of Cavitation and Cavitating Turbopumps;2007

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3