Experimental Investigation of Skin Friction Drag and Heat Transfer on the Surfaces With Concavities in Compressible Fluid Flow

Author:

Titov Alexander A.1,Leontiev Alexander I.1,Vinogradov Uriy A.1,Zditovets Andrey G.1,Strongin Mark M.1

Affiliation:

1. Lomonosov Moscow State University, Moscow, Russia

Abstract

This experimental study has been performed to investigate the surface heat transfer enhancement in compressible fluid flow by using hemispherical concavities (dimples). The experiments were carrying out in supersonic wind-tunnel with free-stream Mach number 2,8. Using the IR-imager the temperature fields of the testing plates were obtained at any time of experiments. The studying of these fields at unsteady conditions allowed to obtain the area-averaged heat transfer coefficient. The skin friction drag of the test plates was found by direct weight measurement with using a “smoothing element”. The skin friction drag and heat transfer were measured simultaneously (at the same conditions) in each experiment. The plate with dimples with ratio of dimple depth to dimple print diameter 0,14 was investigated. It was shown that the tested surface with concavities (vortex generation relief) intensified the heat transfer and decreased the recovery factor in supersonic flow. The ratio of the heat transfer enhancement to the skin friction drag increasing for the dimpled surface in compressible flow is equal to 0,7.

Publisher

ASMEDC

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3