Study on Heat Transfer Mechanism of Isolated Bubble Nucleate Boiling With MEMS Sensors

Author:

Yabuki Tomohide1,Nakabeppu Osamu1

Affiliation:

1. Meiji University, Kawasaki, Japan

Abstract

This paper describes an experimental investigation of heat transfer mechanism beneath isolated bubble during nucleate boiling with MEMS sensors having high temporal and spatial resolution in temperature measurement. The MEMS sensor fabricated for the boiling research includes eight thin film thermocouples and an electrolysis trigger on the topside of 20 × 20 mm2 silicon substrate and thin film heater on the backside. The electrolysis trigger initiates bubble growth by supplying hydrogen gasses as bubble nuclei with the electrolysis of the water by two electrodes. In the experiment, temperature fluctuation beneath an isolated bubble during saturated nucleate boiling of water was measured with the sensor. The measurement data presented strong evaporation and dry-out of the microlayer in the bubble growth phase and rewetting of the dry-out area in the bubble departure phase. Moreover, heat transfer induced by the boiling bubble was evaluated by computing local heat flux through a transient heat conduction simulation in the sensor substrate using the measured data as boundary condition. The heat transfer analysis shows that the local heat flux in the microlayer evaporation area has high value of the order of MW/m2, and the maximum value of about 2 MW/m2 is indicated near the center in an early phase of the bubble growth. On the other hand, the heat flux is very low of around zero at the dry-out area, where microlayer had disappeared completely, and slight increase was observed at the rewetting area. Total heat transferred from the surface reached to about half of latent heat in the bubble until the bubble departure. Finally, initial thickness of the microlayer under the bubble was estimated by integrating the derived local heat flux. As the result, it was distributed in a few μm within the measurement area.

Publisher

ASMEDC

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3