Optimization of a Phase Change Thermal Storage Unit

Author:

Bonadies Monica F.1,Ricklick Mark1,Kapat J. S.1

Affiliation:

1. University of Central Florida, Orlando, FL

Abstract

When collecting the energy of the sun for domestic use, several options exist, one being the use of evacuated tube collectors with internal heat pipes. This study proposes a system integrating these collectors with a storage unit using the phase change of paraffin wax to store energy. The storage unit makes use of a finned heat exchanger, with paraffin wax on the shell side and glycol on the tube side as the heat transfer fluid. The heat exchanger is embedded within the storage paraffin wax with a volume of 2 ft3. The heat exchanger also includes a separate loop for water to flow through and receive thermal energy from the melted wax. Although the wax has the benefit of being inexpensive and nontoxic, it has the problem of low thermal conductivity. Therefore, the heat exchanger has large copper fins brazed to it to extend areas of high thermal conductivity into the wax reservoir. The unit used in this study contains 14 fins. The use of fins will help to speed up the melting of the wax while solar energy is collected, since there is more heat transfer area. When most of the wax is melted, heat can be exchanged to water for domestic use. To determine the benefit of the fins, wax and working fluid temperature data will be taken from a constructed thermal energy storage unit, and then it is used to verify a finite-difference analytical model of the thermal operating characteristics. The maximum operating temperature of the glycol/water mix heat transfer fluid was approximately 65° C when the fluid flowed at 1 gallon per minute. The storage unit was able to store melted wax overnight with a 2–3°C temperature drop with the ambient temperature approximately at 30°C. City water at approximately 3 gpm was used to test the freezing side. The one dimensional model proved useful in predicting the heat storage mode of the system but had some error in predicting the heat release mode of the unit. The model also points to the fact that there are several considerations to be taken when simulating phase change energy storage processes.

Publisher

ASMEDC

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3