Pool Boiling Characteristics of Heat Transfer Surface With Micro Structures Created by Using MEMS Technology

Author:

Koizumi Yasuo1,Ohtake Hiroyasu2,Sato Takato2

Affiliation:

1. Shinshu University, Ueda, Nagano, Japan

2. Kogakuin University, Hachioji, Tokyo, Japan

Abstract

Pool nucleate boiling heat transfer experiments were performed for water by using well-controlled and -defined heat transfer surfaces. The silicon wafers of 0.200 mm thickness were used as the heat transfer surfaces. Artificial-cylindrical cavities, micro-straight-line grooves or micro-crossing-straight-line grooves (square pillars) were created on the silicon plate by utilizing the Micro-Electro Mechanical System (MEMS) technology. In the case of the straight-line grooves and the crossing-straight-line grooves, the grooves were wetted after the heat transfer surface experienced subcooling. Once the grooves were wetted, only small diameter cavities which were formed during the MEMS processing at the bottom of the grooves functioned at the inception of boiling. Thus, a large overshooting of the wall superheat at the inception of boiling was observed. In this point, the micro grooves and micro pillars are not advantageous to cooling a body that periodically generates heat such as MPUs and electro devices. In the fully developed nucleate boiling region, the general trend was similar to that of the usual heat transfer surface. In the case of the artificial-cylindrical cavities, nuclei were well preserved in cavities even after the heat transfer surface experienced subcooling. Thus, no overshooting of the wall superheat at the inception of boiling was observed. As the number of the artificial-cylindrical cavities was increased, the wall superheat shifted to a low wall superheat side. The boiling heat transfer coefficient of the heat transfer surface that had the artificial-cylindrical cavities of the 1 mm pitch was better than that of a usual copper heat transfer surface. The artificial-cylindrical cavities are advantageous to get reliable and better cooling efficiency.

Publisher

ASMEDC

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3