Mixed Convection in Vertical Tubes: High Reynolds Number

Author:

Huang LiDong1,Farrell Kevin J.1

Affiliation:

1. Heat Transfer Research, Inc., College Station, TX

Abstract

The complex interaction of forced and natural convection depends on flow regime and flow direction. Aiding flow occurs when both driving forces act in the same direction (heating upflow fluid and cooling downflow fluid); opposing flow occurs when they act in different directions (cooling upflow fluid and heating downflow fluid). This paper discusses the buoyancy effect on forced convection for single-phase flows in vertical tubes. To evaluate mixed convection methods, Heat Transfer Research, Inc. (HTRI) recently collected water and propylene glycol data in two vertical tubes of different tube diameters. The data cover wide ranges of Reynolds, Grashof, and Prandtl numbers and differing ratios of heated tube length to diameter in laminar, transition, and turbulent forced flow regimes. In this paper, we focus on mixed convection with Reynolds numbers higher than 2000. Using HTRI data and experimental data in literature, we demonstrate that natural convection can greatly increase or decrease the convective heat transfer coefficient. In addition, we establish that natural convection should not be neglected if the Richardson number is higher than 0.01 or the mixed turbulent parameter Ra1/3/(Re0.8 Pr0.4) is higher than 0.05 even in forced turbulent flow with Reynolds numbers greater than 10000. High resolution Reynolds-Averaged Navier-Stokes (RANS) simulations of several experimental conditions confirm the importance of the buoyancy effect on the production of turbulence kinetic energy. We also determine that flow regime maps are required to predict the mixed convection heat transfer coefficient accurately.

Publisher

ASMEDC

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3