Creep Analysis of Orthotropic Rotating Cylinder

Author:

Bhatnagar N. S.1,Arya V. K.2,Debnath K. K.3

Affiliation:

1. Department of Mathematics, Al Mustansiriyah University, Baghdad, Iraq

2. Karlsruhe Nuclear Research Center, Institute for Material and Solid-State Research, Karlsruhe, West Germany

3. Department of Mathematics, University of Roorkee, Roorkee, India

Abstract

The stress and strain-rate distributions in the wall of a hollow thick-walled circular cylinder, rotating about its own axis with a constant angular speed, have been obtained using Norton’s law for the steady-state creep. The cylinder is assumed to be made of a homogeneous and orthotropic material. The numerical computations, for a number of steels and steel alloys commonly used to manufacture the cylinder, have been carried out for three cases of anisotropy. The effect of anistropy and of exponent n in creep law has been studied. It is observed that the stress and strain-rate distributions are significantly affected by the anisotropy of material and the value of exponent n. It is also noticed that the values of the effective stress for an anisotropic material for which the ratios of axial to tangential strain rate and of radial to tangential strain rate are equal to 1.2, are lower than the corresponding values for an isotropic material for which these ratios are 1.0. And, because of a power law between effective strain rate and effective stress, much lower values of the effective strain rate for the foregoing anisotropic material than those for the isotropic material will be obtained. Thus the use of the aforementioned anisotropic material may be beneficial for the manufacture of the cylinders because (i) it will result in a longer life for the cylinders (because of the lowest strain rate), or (ii) it will allow the cylinder to sustain larger forces without a risk of failure under creep.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Safety, Risk, Reliability and Quality

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3