Heat Transfer Enhancement Within a Turbine Blade Cooling Passage Using Ribs and Combinations of Ribs With Film Cooling Holes

Author:

Shen J. R.1,Wang Z.2,Ireland P. T.2,Jones T. V.2,Byerley A. R.3

Affiliation:

1. Institute of Engineering Thermophysics, Chinese Academy of Sciences, Beijing, China

2. Dept. of Engineering Science, University of Oxford, Oxford, United Kingdom

3. Department of Mechanical Engineering, Mercer University, Macon, GA 31207

Abstract

A transient heat transfer method using liquid crystals has been applied to a scale model of a turbine rotor blade passage. Detailed contours of local heat transfer coefficient are presented for the passage in which the heat transfer to one wall was enhanced first by ribs and then with ribs combined with holes. The hole geometry and experimental dimensionless flow rates were representative of those occurring at the entrance to engine film cooling holes. The results for the ribbed passage are compared to established correlations for developed flow. Qualitative surface shear stress distributions were determined with liquid crystals. The complex distributions of heat transfer coefficient are discussed in light of the interpreted flow field.

Publisher

ASME International

Subject

Mechanical Engineering

Cited by 43 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3