Experimental Characterization of Vibration-Assisted Reverse Micro Electrical Discharge Machining (EDM) for Surface Texturing

Author:

Mastud Sachin1,Garg Mayank1,Singh Ramesh1,Samuel Johnson2,Joshi Suhas1

Affiliation:

1. Indian Institute of Technology Bombay, Mumbai, MH, India

2. Rensselaer Polytechnic Institute, Troy, NY

Abstract

There are several examples in nature where the biological surfaces exhibit unique functional response, such as velcro, fish scale and lotus leaves. The texture on lotus leaf exhibits super-hydrophobicity and self cleaning properties. Lotus leaf has hemispherical protrusions of 20–30 μm in diameters which are randomly distributed over the surface. This work is focused on creating similar textured surfaces on Ti6Al4V rods via a vibration assisted reverse micro Electrical Discharge Machining (R-MEDM) process. Textured surfaces containing micropillars of 40–50 μm in diameter spaced at 35 μm have been created during the process. These textured surfaces are expected to exhibit hydrophobicity and hemocompatibility. To experimentally characterize the process, a full factorial design of experiments has been conducted to analyze the effects of voltage, capacitance, amplitude and frequency of the anode (plate electrode) vibrations on the erosion rate and process stability. The process stability is expressed in terms of the percentages of the normal, open circuit and the short circuit durations in the voltage-current (VI) signature obtained during the process. It has been observed that the normal discharge durations increase with an increase in the amplitude and the frequency of the vibrations. Fabricated texture exhibits hydrophobicity and the measured contact angles in a sessile drop test with water varied between 110 and 115°. Also, the textured surface was subjected to hemotoxicity tests which yielded positive results. Based on these results, it can be seen that the machined textured surface are hydrophobic and biocompatible in nature which could potentially find applications in cardiovascular biomedical implants. In addition, this process has been used to create hierarchical structures comprising of primary and a secondary structure over it to mimic the hierarchical structures found on lotus leaves.

Publisher

American Society of Mechanical Engineers

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3