Identification of Force Coefficients in a Squeeze Film Damper With a Mechanical End Seal—Centered Circular Orbit Tests

Author:

San Andrés Luis1,Delgado Adolfo1

Affiliation:

1. Mechanical Engineering Department, Texas A&M University, College Station, TX 77843

Abstract

The damping capability of squeeze film dampers (SFDs) relies on adequate end sealing to prevent air ingestion and entrapment. The paper presents the parameter identification procedure and force coefficients of a test SFD featuring a mechanical seal that effectively eliminates lubricant side leakage. The test damper reproduces an aircraft application intended to contain the lubricant in the film lands for extended periods of time. The test damper journal is 2.54cm in length and 12.7cm in diameter, with a nominal clearance of 0.127mm. The SFD feed end is flooded with oil, while the discharge end contains a recirculation groove and four orifice ports. In a companion paper (San Andrés and Delgado, 2006, ASME J. Eng. Gas Turbines Power, 119, to be published) single frequency–unidirectional load excitation tests were conducted, without and with lubricant in the squeeze film lands, to determine the seal dry-friction force and viscous damping force coefficients. Presently, tests with single frequency excitation loads rendering circular centered orbits excitations are conducted to identify the SFD force coefficients. The identified parameters include the overall system damping and the individual contributions from the squeeze film, dry friction and structural damping. The identified system damping coefficients are frequency and motion amplitude dependent due to the dry friction interaction at the mechanical seal interface. Identified squeeze film force coefficients, damping, and added mass, are in good agreement with predictions based on the full film, short length damper model.

Publisher

ASME International

Subject

Surfaces, Coatings and Films,Surfaces and Interfaces,Mechanical Engineering,Mechanics of Materials

Reference23 articles.

1. Design and Application of Squeeze Film Dampers in Rotating Machinery;Zeidan

2. The Squeeze Film Damper Over Four Decades of Investigations. Part I: Characteristics and Operating Features;Della;Shock Vib. Dig.

3. The Squeeze Film Damper Over Four Decades of Investigations. Part II: Rotordynamic Analyses With Rigid and Flexible Rotors;Della;Shock Vib. Dig.

4. Estimation of Squeeze-Film Damping and Inertial Coefficients From Experimental Free-Decay Data;Roberts;Proc. Inst. Mech. Eng., Part C: Mech. Eng. Sci.

5. The Complete Determination of Squeeze-Film Linear Dynamic Coefficients From Experimental Data;Ellis;ASME J. Tribol.

Cited by 26 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3