Numerical Investigation of the Flutter of a Spherical Shell

Author:

Menaa Mohamed1,Lakis Aouni A.2

Affiliation:

1. Department of Mechanical Engineering, Ecole Polytechnique de Montréal, C.P. 6079 Succursale Centre-Ville, Montréal H3C 3A7, Canada e-mail:

2. Department of Mechanical Engineering, Ecole Polytechnique de Montréal, C.P. 6079 Succursale Centre-Ville, Montréal H3C 3A7, Canada e-mail:

Abstract

In this study, aeroelastic analysis of a spherical shell subjected to external supersonic airflow is carried out. The structural model is based on a combination of the linear spherical shell theory and the classic finite element method (FEM). In this hybrid method, the nodal displacements are found from the exact solution of shell governing equations rather than approximated by polynomial functions. Therefore, the number of elements chosen is a function of the complexity of the structure. Convergence is rapid. It is not necessary to choose a large number of elements to obtain good results. Linearized first-order potential (piston) theory with the curvature correction term is coupled with the structural model to account for pressure loading. The linear mass, stiffness, and damping matrices are found using the hybrid finite element formulation. Aeroelastic equations are numerically derived and solved. The results are validated using the numerical and theoretical data available in literature. The analysis is accomplished for spherical shells with different boundary conditions, geometries, flow parameters, and radius to thickness ratios. the results show that the spherical shell loses its stability through coupled-mode flutter. This proposed hybrid FEM can be used efficiently for the design and analysis of spherical shells employed in high speed aircraft structures.

Publisher

ASME International

Subject

General Engineering

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3