Application of Short and Long (Enhanced Vlasov's) Solutions for Cylindrical Shell on Example of Concentrated Radial Force

Author:

Oryniak Andrii1,Orynyak Igor2

Affiliation:

1. Public Joint Stock Company “Ukrtransnafta,” Moskovska Street 32/2, Kyiv 01010, Ukraine

2. Department of Applied Mathematics, Kiev Polytechnic Institute, National Technical University, Peremohy Street 37, Kyiv 03056, Ukraine

Abstract

Abstract Analytical approaches for cylindrical shell are mostly based on expansion of all variables in Fourier series in circumferential direction. This leads to eighth-order differential equation with respect to axial coordinate. Here it is approximately treated as a sum of two fourth-order biquadratic equations. First one assumes that all variables change more quickly in circumferential direction than in axial one (long solution), while the second (short) one is based on opposite assumption. The accuracy and applicability of this approach were demonstrated (Orynyak, I., and Oryniak, A., 2018, “Efficient Solution for Cylindrical Shell Based on Short and Long (Enhanced Vlasov's) Solutions on Example of Concentrated Radial Force,” ASME Paper No. PVP2018-85032) on example of action of one or two concentrated radial forces and compared with finite element method results. This paper is an improvement of our previous work (Orynyak, I., and Oryniak, A., 2018, “Efficient Solution for Cylindrical Shell Based on Short and Long (Enhanced Vlasov's) Solutions on Example of Concentrated Radial Force,” ASME Paper No. PVP2018-85032). Two amendments are made. The first is insignificant one and use slightly modified expressions for bending strains, while the second one relates to the short solution. Here we do not consider any more that circumferential displacement is negligible as compared with radial one. Eventually this improves the accuracy of results, as compared with previous work. For example, for cylinder with radius, R, to wall thickness, h, ratio equal to 20, the maximal inaccuracy for radial displacement in point of force application decreases from 5% to 3%. For thinner cylinder with R/h = 100, this inaccuracy decreases from 2.5% to 1.25%. These inaccuracies are related to larger terms in Fourier expansion, the significance of which decrease when length or area of outer loading becomes greater. The last conclusion is demonstrated for the case of distributed concentrated force acting along short segment on axial line.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Safety, Risk, Reliability and Quality

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3