Experimental Investigation of Heat Transfer on the Internal Tip Wall in a Rotating Two-Pass Rectangular Channel

Author:

Chia Kai-Chieh1,Huang Szu-Chi1,Liu Yao-Hsien1

Affiliation:

1. Department of Mechanical Engineering, National Chiao Tung University, Hsinchu, Taiwan 30010

Abstract

Abstract The tip turn region within the gas turbine blade experienced severe thermal issues related to temperature variations and temperature gradients. The current study experimentally measured the heat transfer distribution of the internal blade tip wall in a rotating cooling channel. The aspect ratio of this rectangular channel was 1:4, and the hydraulic diameter was 25.6 mm. Due to the impact of the 180 deg turn, complex three-dimensional flow significantly affected the heat transfer on the internal tip surface. The steady-state liquid crystal method was used to obtain a detailed distribution of heat transfer on the internal tip surface. In this study, the leading and trailing surfaces of the channel wall were either smooth or roughened with 45 deg angled ribs. The Reynolds number inside the pressurized cooling channel ranged from 10,000 to 30,000, and the rotation number was up to 0.53. Furthermore, two-channel orientations (90 deg and 135 deg) with respect to the rotation direction were tested. The tip heat transfer from the smooth channel wall was more sensitive to rotation, and the largest heat transfer enhancement caused by rotation was 68%. Channel orientation of 90 deg produced higher heat transfer compared to the orientation of 135 deg.

Funder

Ministry of Science and Technology, Taiwan

Publisher

ASME International

Subject

Fluid Flow and Transfer Processes,General Engineering,Condensed Matter Physics,General Materials Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3