Investigation of Reverse Flow Slinger Combustor With Jet A-1 and Methanol

Author:

Dubey Abhishek1,Nema Pooja1,Kushari Abhijit1

Affiliation:

1. Department of Aerospace Engineering, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh 208016, India

Abstract

Abstract This paper describes an experimental investigation of the reverse flow slinger (RFS) combustor that has been developed in order to attain high flame stability and low emissions in gas turbine (GT) engines. The combustor employs centrifugal fuel injection through a rotary atomizer and performs flame stabilization at the stagnation zone generated by reverse flow configuration. The design facilitates entrainment of hot product gases and internal preheating of inlet air, which enhances flame stability and permits stable lean operation for low NOx. Moreover, a rotary atomizer eliminates the need for high injection pressures, resulting in a compact and lightweight design. Atmospheric pressure combustion was performed with liquid fuels, Jet A-1 and methanol, at ultralean fuel–air ratios (FARs) with thermal intensity varying from 30 to 52 MW/m3 atm. Combustor performance was evaluated by analyzing the lean blowout, emissions, and combustion efficiency. A very low lean blowout corresponding to global equivalence ratio of 0.1 was observed, which showed the combustor's high flame stability. Sustained and stable combustion at low heat release was attained, and NOx emissions as low as 0.4 g/kg and 0.1 g/kg were achieved with Jet A-1 and methanol, respectively. Combustion efficiency of around 55% and 90% was obtained in operation with Jet A-1 and methanol. The overall combustor performance was significantly better with methanol in terms of emissions and efficiency.

Publisher

ASME International

Subject

Mechanical Engineering,Energy Engineering and Power Technology,Aerospace Engineering,Fuel Technology,Nuclear Energy and Engineering

Reference45 articles.

1. Low NOx Rich-Lean Combustion Concept Application,1991

2. Technology for the Design of High Temperature Rise Combustors;J. Propul. Power,1987

3. TAPS: A Fourth Generation Propulsion Combustor Technology for Low Emissions,2003

4. Dry Low Emissions Combustor Development,1998

5. Effects of Equivalence Ratio and Dwell Time on Exhaust Emissions From an Experimental Premixing Prevaporizing Burner,1975

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3