A Novel In Vitro Testing Approach for the Next Generation of Transvenous Cardiac Leads: Buckling Behavior

Author:

Walsh Donna L.1,Williams Ashok1,Vesnovsky Oleg1,Timmie Topoleski L. D.2,Duraiswamy Nandini3

Affiliation:

1. Office of Science and Engineering Laboratories, Center for Devices and Radiological Health, U.S. Food and Drug Administration, Silver Spring, MD 20993

2. Office of Science and Engineering Laboratories, Center for Devices and Radiological Health, U.S. Food and Drug Administration, Silver Spring, MD 20993; Department of Mechanical Engineering, University of Maryland—Baltimore County, Baltimore, MD 21250

3. Office of Science and Engineering Laboratories, Center for Devices and Radiological Health, U.S. Food and Drug Administration, 10903, New Hampshire Avenue, Silver Spring, MD 20993 e-mail:

Abstract

Manufacturers are constantly seeking to design new, better performing transvenous cardiac leads to prevent perforation of the heart by the lead tip. Currently, there is no standardized test method to measure the buckling load of leads, a major factor in the propensity of the lead to perforate the heart. This study further investigates the effect of boundary conditions on buckling loads at the lead tip of different transvenous cardiac leads achieved using different variations of our initial physiologically relevant test method. The goals of the test are to create the maximum buckling load with high repeatability and the simplest possible design. A buckling test was performed to capture maximum buckling load using three leads of each model (five currently available cardiac lead models) and were tested in each of six test setups. The buckling test methodology had a substantial effect on the load-displacement profiles, regardless of whether the lead was a pacemaker or defibrillator lead. By adding the right ventricular (RV) constraint, the buckling load more than doubled for most leads. The use of a lubricant reduced friction between the lead body and the RV surface, and thereby subsequently lowered the buckling load in those setups that used the RV constraint. In addition, the use of the lubricant reduced the variability in the results. The addition of both the RV constraint and the lubricant substantially influences the mechanical behavior of transvenous cardiac leads and is recommended for buckling testing of transvenous cardiac leads.

Funder

Office of Women's Health

Publisher

ASME International

Subject

Biomedical Engineering,Medicine (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3