Affiliation:
1. The Torrington Co., Norcross, GA 30093
2. Department of Mechanical Engineering, Aeronautical Engineering and Mechanics, Rensselaer Polytechnic Institute, Troy, NY 12180-3590
Abstract
In an effort to maximize the metal removal rate in end milling while avoiding excessive cutter deflection or breakage, both fixed gain and adaptive controllers have been implemented for on-line feedrate manipulation to maintain a constant cutting force. While such controllers have been able to increase the metal cutting efficiency, they have also exhibited performance problems when large changes in the process dynamics occur. To assist in controller design and evaluation through digital simulation, a new dynamic model of the end milling force response to changes in feedrate and/or spindle speed is presented. This model, based on chip formation mechanics, takes explicitly into account the effect of cutter runout and deflection on the chip load, permits variations in the axial and radial depths of cut to be modeled, and provides surface geometry predictions. Model predictions are shown to correspond well with experimental machining data.
Cited by
24 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献