The Acute Effect of Bipolar Radiofrequency Energy Thermal Chondroplasty on Intrinsic Biomechanical Properties and Thickness of Chondromalacic Human Articular Cartilage

Author:

Dutcheshen Nicholas1,Maerz Tristan2,Rabban Patrick3,Haut Roger C.4,Button Keith D.5,Baker Kevin C.6,Guettler Joseph7

Affiliation:

1. Doctor of Medicine, Medical Office Building, Suite 744, Orthopaedic Surgery, Beaumont Health System, 3535 W Thirteen Mile Road, Royal Oak, MI 48073

2. Master of Science in Biomedical Engineering, Orthopaedic Research, Beaumont Health System, 3811 W. Thirteen Mile Road, Royal Oak, MI 48073

3. Bachelor of Science in Biomedical Engineering, Orthopaedic Research, Beaumont Health System, 3811 W. Thirteen Mile Road, Royal Oak, MI 48073

4. Doctor of Philosophy in Mechanics, Orthopaedic Biomechanics Laboratories, Michigan State University, East Lansing, MI 48824

5. Bachelor of Science in Mechanical Engineering, Orthopaedic Biomechanics Laboratories, Michigan State University, East Lansing, MI 48824

6. Doctor of Philosophy in Biomedical Engineering, Research Institute, Suite 404, Orthopaedic Research, Beaumont Health System, 3811 W. Thirteen Mile Road, Royal Oak, MI 48073

7. Doctor of Medicine Orthopaedic Surgery, Beaumont Health System, 3535 W Thirteen Mile Road, Royal Oak, MI 48073

Abstract

Radio frequency energy (RFE) thermal chondroplasty has been a widely-utilized method of cartilage debridement in the past. Little is known regarding its effect on tissue mechanics. This study investigated the acute biomechanical effects of bipolar RFE treatment on human chondromalacic cartilage. Articular cartilage specimens were extracted (n = 50) from femoral condyle samples of patients undergoing total knee arthroplasty. Chondromalacia was graded with the Outerbridge classification system. Tissue thicknesses were measured using a needle punch test. Specimens underwent pretreatment load-relaxation testing using a spherical indenter. Bipolar RFE treatment was applied for 45 s and the indentation protocol was repeated. Structural properties were derived from the force-time data. Mechanical properties were derived using a fibril-reinforced biphasic cartilage model. Statistics were performed using repeated measures ANOVA. Cartilage thickness decreased after RFE treatment from a mean of 2.61 mm to 2.20 mm in Grade II, II-III, and III specimens (P < 0.001 each). Peak force increased after RFE treatment from a mean of 3.91 N to 4.91 N in Grade II and III specimens (P = 0.002 and P = 0.003, respectively). Equilibrium force increased after RFE treatment from a mean of 0.236 N to 0.457 N (P < 0.001 each grade). Time constant decreased after RFE treatment from a mean of 0.392 to 0.234 (P < 0.001 for each grade). Matrix modulus increased in all specimens following RFE treatment from a mean 259.12 kPa to 523.36 kPa (P < 0.001 each grade). Collagen fibril modulus decreased in Grade II and II-III specimens from 60.50 MPa to 42.04 MPa (P < 0.001 and P = 0.005, respectively). Tissue permeability decreased in Grade II and III specimens from 2.04 *10−15 m4/Ns to 0.91 *10−15 m4/Ns (P < 0.001 and P = 0.009, respectively). RFE treatment decreased thickness, time constant, fibril modulus, permeability, but increased peak force, equilibrium force, and matrix modulus. While resistance to shear and tension could be compromised due to removal of the superficial layer and decreased fibril modulus, RFE treatment increases matrix modulus and decreases tissue permeability which may restore the load- bearing capacity of the cartilage.

Publisher

ASME International

Subject

Physiology (medical),Biomedical Engineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3