Tow Forces for Emergency Towing of Containerships

Author:

Shigunov Vladimir1,Schellin Thomas E.1

Affiliation:

1. DNV GL SE, Hamburg 20457, Germany e-mail:

Abstract

For a series of five containerships of differing capacities (707, 3400, 5300, 14,000, and 18,000 TEU), systematic computations were performed to estimate the tow force required in an emergency. Time-average ship positions with respect to the given waves, wind, and current directions and the corresponding time-average forces were considered. Current speed was considered to include also towing speed. Directionally aligned as well as not aligned wind and waves were investigated. Wave height, wind speed, and wave and wind direction relative to current direction were systematically varied. Wind speeds based on the Beaufort wind force scale corresponded to significant wave heights for a fully arisen sea. Waves were assumed to be irregular short-crested seaways described by a Joint North Sea Wave Observation Project (JONSWAP) spectrum with peak parameter 3.3 and cosine squared directional spreading. For each combination of current speed, wave direction, significant wave height, and peak wave period, the required tow force and the associated drift angle were calculated. Tow force calculations were based on the solution of equilibrium equations in the horizontal plane. A Reynolds-Averaged Navier–Stokes (RANS) solver obtained current and wind forces and moments; and a Rankine source-patch method, drift forces and moments in waves. Tow forces accounted for steady (calm-water) hydrodynamic forces and moments, constant wind forces and moments, and time-average wave drift forces and moments. Rudder and propeller forces and towline forces were neglected.

Publisher

ASME International

Subject

Mechanical Engineering,Ocean Engineering

Reference13 articles.

1. Emergency Towing Vessels Assessment of Requirements,2008

2. Sinibaldi, M., Bulian, G., and Francescutto, A., 2013, “A Nonlinear Dynamics Perspective on Some Aspects of Towing Operations Relevant to Safety and Energy Efficiency,” First International Conference IDS2013—Amazonia, Iquitos, Peru, July 17–19, pp. 05-1–05-16.

3. Simulation and Stability of Ship Towing;Int. Shipbuild. Prog.,1985

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3