Nonlinear Vibrations of Axially Functionally Graded Timoshenko Tapered Beams

Author:

Ghayesh Mergen H.1

Affiliation:

1. School of Mechanical Engineering, University of Adelaide, Adelaide 5005, South Australia, Australia e-mail:

Abstract

This paper presents the coupled axial-transverse-rotational nonlinear forced vibrations of Timoshenko tapered beams made of an axially functionally graded (AFG) material subjected to an external harmonic excitation. Two sources of nonlinearities are considered in modeling and numerical simulations: (i) the geometric nonlinearities arising from induced nonlinear tension due to the clamped–clamped boundary conditions and large deformations, and (ii) nonlinear expressions to address the nonuniform geometry and mechanical properties of the beam along the length. More specifically, a nonlinear model is developed based on the Timoshenko beam theory accounting for shear deformation and rotational inertia. Exponential distributions are presumed for the cross-sectional area, moduli of elasticity, mass density, and Poisson's ratio of the AFG tapered Timoshenko beam. The kinetic and potential energies, the virtual work of the external harmonic distributed load, and the one done by damping are implemented into Hamilton's energy principle. The resultant nonuniform nonlinearly coupled partial differential equations are discretized into a set of nonlinear ordinary differential equations utilizing Galerkin's technique. In the discretization scheme, a large number of modes, both symmetric and asymmetric, are employed due to the asymmetric characteristic of the nonuniform beam with respect to its length. The effect of different parameters, including the gradient index and different taper ratios, on the force-vibration-amplitude and frequency-vibration-amplitude diagrams is examined; the effect of these parameters on the natural frequencies, internal resonances, and asymmetric characteristics of the AFG system is investigated as well.

Publisher

ASME International

Subject

Applied Mathematics,Mechanical Engineering,Control and Systems Engineering,Applied Mathematics,Mechanical Engineering,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3