Variable Damping Profiles Using Modal Analysis for Laser Shock Peening Simulation

Author:

Hatamleh Mohammad I.1,Mahadevan Jagannathan1,Malik Arif1,Qian Dong1

Affiliation:

1. Mechanical Engineering Department, Erik Jonsson School of Engineering and Computer Science, The University of Texas at Dallas, 800 W. Campbell Road, Richardson, TX 75080 e-mail:

Abstract

The single explicit analysis using time-dependent damping (SEATD) technique for laser shock peening (LSP) simulation employs variable damping to relax the excited model between laser shots, thus distinguishing it from conventional optimum constant damping methods. Dynamic relaxation (DR) is the well-established conventional technique that mathematically identifies the optimum constant damping coefficient and incremental time-step that guarantees stability and convergence while damping all mode shapes uniformly when bringing a model to quasi-static equilibrium. Examined in this research is a new systematic procedure to strive for a more effective, time-dependent variable damping profile for general LSP configurations and boundary conditions, based on excited modal parameters of a given laser-shocked system. The effects of increasing the number of mode shapes and selecting modes by contributed effective masses are studied, and a procedure to identify the most efficient variable damping profile is designed. Two different simulation cases are studied. It is found that the computational time is reduced by up to 25% (62.5 min) for just five laser shots using the presented variable damping method versus conventional optimum constant damping. Since LSP typically involved hundreds of shots, the accumulated savings in computation time during prediction of desired process parameters is significant.

Publisher

ASME International

Subject

Industrial and Manufacturing Engineering,Computer Science Applications,Mechanical Engineering,Control and Systems Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3