Self-Organizing Neural Network Application to Drill Wear Classification

Author:

Govekar E.1,Grabec I.1

Affiliation:

1. University of Ljubljana, P.O.B. 394, 61000 Ljubljana, Slovenia

Abstract

The article describes an application of a simulated neural network to drill wear classification from cutting force signals generated by the drilling process. As the input to the neural network, a multicomponent vector composed of a sensory part and a descriptive part is used. The components of the sensory part represent characteristic features of the cutting momentum and the feed force power spectra, while the descriptive part encodes the corresponding drill wear class. During adaptation, the self-organizing neural network is used to form a set of prototype vectors representing an empirical model of the observed drilling process. The model is used in the analysis mode of the system for an on-line classification of the drill wear from the cutting forces. The performance of the developed information processing system is experimentally demonstrated by classification of drill wear during machining on a steel workpiece.

Publisher

ASME International

Subject

General Medicine

Cited by 33 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Applications of Artificial Intelligence for Static Poisson’s Ratio Prediction While Drilling;Computational Intelligence and Neuroscience;2021-05-04

2. Comprehensive Study on Tool Wear During Machining of Fiber-Reinforced Polymeric Composites;Machining and Machinability of Fiber Reinforced Polymer Composites;2020-12-23

3. ANN Modelling to Optimize Manufacturing Process;Advanced Applications for Artificial Neural Networks;2018-02-28

4. Neural network approach for automatic image analysis of cutting edge wear;Mechanical Systems and Signal Processing;2017-05

5. A computer assistant for monitoring tool performance during the drilling process;International Journal of Computer Integrated Manufacturing;2012-09

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3