Kinematic Analysis and Design of a Six-Degrees of Freedom 3-RRPS Mechanism for Bone Reduction Surgery

Author:

Essomba Terence1,Nguyen Phu Sinh2

Affiliation:

1. Department of Mechanical Engineering, National Central University, 300, Jhongda Road, Jhongli City, Taoyuan County 32001, Taiwan

2. The University of Danang – University of Technology and Education, 48, Caothang Street, Danang 550000, Vietnam

Abstract

Abstract Robot-assisted bone reduction surgery consists in using robots to reposition the bone fragments into their original place prior to fracture healing. This study presents the application of a 3-RRPS augmented tripod mechanism with six degrees-of-freedom for longitudinal bone reduction surgery. First, the inverse and forward kinematic models of the mechanism are investigated. Particularly, the forward kinematic is solved by applying Sylvester's dialytic method. Second, the velocity model is studied and its singular configurations are identified. The workspace of the 3-RRPS mechanism is then outlined and compared with the Stewart platform, which is a classical mechanism for the targeted application. The results show that this mechanism provides a larger workspace, especially its rotation angle about the vertical axis, which is an important aspect in the bone reduction. A series of simulations on the numerical and graphic software is performed to verify the entire analysis of the parallel mechanism. A physiguide and mscadams software are used to carry out a simulation of a real case of femur fracture reduction using the proposed mechanism to validate its suitability. Finally, a robotic prototype based on the mechanism is manufactured and experimented using an artificial bone model to evaluate the feasibility of the mechanism.

Funder

Ministry of Science and Technology, Taiwan

Publisher

ASME International

Subject

Biomedical Engineering,Medicine (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3