Heat Transfer Inside the Physical Vapor Transport Reactor

Author:

Zhang Zeyi12,Xu Min3,Wang Liqiu14

Affiliation:

1. Department of Mechanical Engineering, The University of Hong Kong, Pokfulam, Hong Kong;

2. HKU-Zhejiang Institute of Research and Innovation (HKU-ZIRI), Hangzhou, Zhejiang 311300, China

3. Energy Research Institute, Shandong Academy of Sciences, Jinan, Shandong 250014, China

4. HKU-Zhejiang Institute of Research and Innovation (HKU-ZIRI), Hangzhou, Zhejiang 311300, China e-mail:

Abstract

The physical vapor transport (PVT) method is widely adopted to produce semiconductor materials including silicon carbide (SiC). This work focuses on the role of thermal radiation for the heat transfer inside the PVT reactor. The radiation is characterized by two dimensionless parameters relating to the SiC charge and to the growth chamber. A simulation program is set up with the finite-volume method (FVM), considering heat generation, conduction, and radiation under the steady-state condition. Comprehensive results are obtained by tuning values of dimensionless parameters and the associated controlling variables, such as the cooling temperature and the coil current density, and illustrated in the phase diagrams. From the study, we find that the charge size has negligible influence on the temperature field, the crucible conduction determines the temperature level, and the relative strength of the chamber radiation against the crucible conduction modifies the temperature field on the SiC ingot. Finally, design guidelines are proposed with the instructive phase diagram to achieve the optimized thermal performance of the PVT reactor.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Reference38 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3