Microstructure-Based Failure Mechanisms Encountered During Fracture Cutting of Age-Varying Bovine Cortical Bone

Author:

Conward Michael1,Samuel Johnson1

Affiliation:

1. Rensselaer Polytechnic Institute Department of Mechanical Aerospace and Nuclear Engineering, , 110 8th Street, Troy, NY 12180

Abstract

Abstract This article aims to investigate the characteristic microstructure-based failure mechanisms observed during the fracture cutting of age-varying bovine cortical bone. To this end, orthogonal cutting experiments are performed on cortical femoral bones harvested from three distinct bovine age groups, viz., young (∼1 month), mature (16–18 months), and old (∼30 months). Fracture cutting is induced at a depth of cut of 70 μm and a cutting velocity of 800 mm/min by using two distinct tool rake angles of +20 deg and 0 deg. The nanoindentation studies and porosity analysis show key differences between microstructural constituents, as a function of age. The high-speed camera images taken during the fracture cutting process provide insight into six dominant microstructure-specific failure mechanisms. These include primary osteonal fracture, woven fracture, and lamellar fracture observed in the plexiform region; and cement line fracture (i.e., osteon debonding), secondary osteonal fracture, and interstitial matrix fracture observed in the haversian regions. In addition to the conventionally reported specific cutting energy metric, a new metric of resultant cutting force per unit crack area and surface integrity are employed here. All cutting responses are seen to be sensitive to age-related microstructural variations and the tool rake angle. In addition to requiring more cutting force, the neutral tool rake angle also results in notable subsurface damage.

Funder

Division of Civil, Mechanical and Manufacturing Innovation

Rensselaer Polytechnic Institute

Publisher

ASME International

Subject

Industrial and Manufacturing Engineering,Computer Science Applications,Mechanical Engineering,Control and Systems Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3