Modeling, Implementing and Evaluating of an Advanced Dual Axis Heliostat Drive System

Author:

Hamanah W. M.1,Salem Aboubakr2,Abido Mohamed3,Al-Sualaiman Fahad4,Qwbaiban Abdulaziz5,Habetler Thomas6

Affiliation:

1. P. O. Box: 279 King Fahd University of Petroleum and Minerals Dhahran, Select State/Province 31261 Saudi Arabia

2. KFUPM - Dhahran Dhahran, Eastern Province 31261 Saudi Arabia

3. KFUPM Box 183 Dhahran, Saudi Arabia 31261 Saudi Arabia

4. Dhahran Dammam, Eastern 31261 Saudi Arabia

5. School of Electrical and Computer Engineering, Georgia Institute of Technology Atlanta, GA 30332

6. Georgia Tech School of ECE Atlanta, GA 30332

Abstract

Abstract Heliostat tracking is a critical component of the solar field of concentrating solar power tower (SPT) systems and can be the source of significant losses in power and profit when it lacks the necessary accuracy. This paper presents an advanced heliostat drive system for the SPT generation plant. An integrated model for the heliostat drive system based on dual axes tracking is proposed using an inexpensive angle sensor. The mathematical model of the integrated drive system is developed, including the solar, tower, and heliostat models. The MATLAB simulation model for the proposed integrated drive system is developed and evaluated. An experimental prototype for a dual-axis heliostat is built using Class-E DC choppers and an inexpensive Gyro angle sensor. The prototype is tested and considered in the Dhahran region in Saudi Arabia under different operating conditions. A comparative study between simulation and experimental results is conducted to assess the efficacy and accuracy of the proposed controller drive system and validate the developed integrated model. Both simulation and experimental results demonstrate the effectiveness of the proposed dual-axis trackers to follow the sunbeams throughout the year.

Publisher

ASME International

Subject

Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3