Numerical Investigations Into Nonlinear Vibro-Ultrasonics and Surface Vibration Comparison Method for Detection of Defects in a Composite Laminate

Author:

Singh Ashish Kumar1,Tan Vincent B. C.1,Tay Tong Earn1,Lee Heow Pueh1

Affiliation:

1. Department of Mechanical Engineering, National University of Singapore, 9 Engineering Drive 1, Singapore 117575

Abstract

Abstract This paper begins with a numerical study based on earlier experiments of nonlinear vibro-ultrasonic behavior of a composite laminate with a delamination defect upon sinusoidal linear sweep signal excitation. A methodology to model laminates with cross-ply layup is presented which can be extended to any layup if desired. In comparison to experiments where it is challenging to visualize the fine details of vibrations, simulations make it easier to visualize and help in optimizing the defect probing methods. The paper goes on to discuss with the help of numerical results that a separation gap between the delamination surfaces occurs to be a common cause for the failure of nonlinear vibro-ultrasonic methods to detect delamination defects. This constraint can often be overcome with application of higher excitation amplitudes as has been demonstrated in several experimental works. However, in this study, a new approach named surface vibration comparison method to probe delamination defects in the absence of contact acoustic nonlinearity is proposed as a proof-of-concept. The technique is then evaluated for detection of weak kissing bond defects in composite beam specimens. Both the experimental and simulation results show potential of the method as damage detection technique in thin composite structures.

Funder

Ministry of Education - Singapore

Publisher

ASME International

Subject

Mechanics of Materials,Safety, Risk, Reliability and Quality,Civil and Structural Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3