Study on Anti-Scuffing Load-Bearing Thermoelastic Lubricating Properties of Meshing Gears With Contact Interface Micro-Texture Morphology

Author:

Ruan Jiafu1,Wang Xigui1,Wang Yongmei2,Li Chen1

Affiliation:

1. School of Engineering Technology, Northeast Forestry University, No. 26, Hexing Road, Xiangfang District, Harbin 150040, China

2. School of Motorcar Engineering, Heilongjiang Institute of Technology, No. 999, Hongqidajie Road, Daowai District, Harbin 150036, China

Abstract

Abstract In the process of gear meshing, it is an inevitable trend to encounter failure cases such as contact friction thermal behavior and interface thermoelastic scuffing wear. As one of the cores influencing factors, the gear meshing contact interface micro-texture (CIMT) morphology significantly restricts the gear transmission system (GTS) dynamic characteristics. This subject intends to the contact characteristic model and interface friction dynamics coupling model of meshing gear pair with different CIMT morphologies. Considering the influence of gear meshing CIMT on the distribution type of hydrodynamic lubricating oil film, contact viscous damping, and frictional thermal load, the aforementioned models have involved time-varying meshing stiffness and static transmission error. Based on the proposed models, an example verification of meshed gear pair (MGP) is analyzed to reveal the influence of CIMT on the dynamic characteristics of GTS under a variety of micro-texture configurations and input branch power and rated speed/shaft torque conditions. Numerical simulation results indicate that the influence of CIMT on gear dynamic response (including meshing interface frictional thermal load, malicious damping, and impact vibration in the off-line direction of the action) is extremely restricted by the transient contact regularity of the meshing gear surface. Meshing gears dynamic characteristics (especially vibration and noise) can be obviously and effectively adjusted by setting a regular MGP with CIMT morphology instead of random gear surfaces.

Publisher

ASME International

Subject

Surfaces, Coatings and Films,Surfaces and Interfaces,Mechanical Engineering,Mechanics of Materials

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3