Determination of Flow Units in Carbonate Reservoir With Multiscale Karst Morphology

Author:

Yang Yang1,Liu Huiqing1,Wang Jing1,Zhang Zhaoxiang1,Chen Qingyuan2,Cheng Hong1

Affiliation:

1. MOE Key Laboratory of Petroleum Engineering, China University of Petroleum, Beijing 102249, China e-mail:

2. PetroChina Dagang Oilfield Company, Tianjin 300000, China e-mail:

Abstract

The Tahe reservoir, one of the largest scale carbonate reservoirs in western China, has very special cavities and fractures. The size of the cavities ranges from millimeter to meter scale, and the size of the fractures ranges from hundreds micrometers to millimeters scale. The length of some cavities can even reach kilometers. However, based on views of core testing results, there is insignificant flow in the rock matrix. This paper introduces a new and refined method to determine flow units in such Karst carbonate reservoirs. Based on fractal theory, fluid flow patterns can be divided into three types by using production data of the Tahe reservoir. Through porosity and permeability statistics of production layers on the established geological model, flow boundaries of different flow patterns were proposed. Flow units were classified in terms of the flow boundaries. As for refined flow units, subcategory flow units were determined by three graphical tools: the limit of dynamic synthesis coefficient (DSCL) method, modified flow coefficient (MS1 and MS2, which are derived by the Forchheimer equation) curve, and the stratigraphic modified Lorenz plot (SMLP). All the parameters of graphical tools help to reconcile geology to fluid flow by illustrating the important link between geology, petrophysics, and reservoir engineering. The use of this technique is illustrated with data from a specific block of the Tahe reservoir.

Publisher

ASME International

Subject

Geochemistry and Petrology,Mechanical Engineering,Energy Engineering and Power Technology,Fuel Technology,Renewable Energy, Sustainability and the Environment

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3