Instability of Viscoelastic Annular Liquid Jets in a Radial Electric Field

Author:

Liu Lu-jia1,Lu Li-peng2

Affiliation:

1. School of Astronautics, Beijing University of Aeronautics and Astronautics, Beijing 100191, China

2. School of Energy and Power Engineering, Beijing University of Aeronautics and Astronautics, Beijing 100191, China e-mail:

Abstract

Research on the instability of viscoelastic annular liquid jets in a radial electric field has been carried out. The analytical dimensionless dispersion relation between unstable growth rate and wave number is derived by linear stability analysis. The Oldroyd B model was used to describe the viscoelastic characteristics of the viscoelastic fluids. Considering that the para-sinuous mode has been found to be always dominant in the jet instability, the effects of various parameters on the instability of viscoelastic annular liquid jets are examined only in the para-sinuous mode. Nondimensionalized plots of the solutions exhibit the stabilizing or destabilizing influences of electric field effects and the physical properties of the liquid jets. Both temporal instability analysis and spatiotemporal instability analysis were conducted. The results show that the radial electric field has a dual impact on viscoelastic annular liquid jets in the temporal mode. Physical mechanisms for the instability are discussed in various possible limits. The effects of Weber number, elasticity number, and electrical Euler number for spatiotemporal instability analysis were checked. As the Weber number increases, the liquid jet is first in absolute instability and then in convective instability. However, the absolute value of the absolute growth rate at first decreases, and then increases with the increase of We, which is in accordance with temporal instability analysis. Comparisons of viscoelastic annular jets with viscoelastic planar liquid jets and cylindrical liquid jets were also carried out.

Publisher

ASME International

Subject

Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3