Bayesian Optimal Design of Experiments for Inferring the Statistical Expectation of Expensive Black-Box Functions

Author:

Pandita Piyush1,Bilionis Ilias2,Panchal Jitesh3

Affiliation:

1. School of Mechanical Engineering,Purdue University,West Lafayette, IN 47907e-mail: ppandit@purdue.edu

2. School of Mechanical Engineering,Purdue University,West Lafayette, IN 47907e-mail: ibilion@purdue.edu

3. School of Mechanical Engineering,Purdue University,West Lafayette, IN 47907e-mail: panchal@purdue.edu

Abstract

Abstract Bayesian optimal design of experiments (BODEs) have been successful in acquiring information about a quantity of interest (QoI) which depends on a black-box function. BODE is characterized by sequentially querying the function at specific designs selected by an infill-sampling criterion. However, most current BODE methods operate in specific contexts like optimization, or learning a universal representation of the black-box function. The objective of this paper is to design a BODE for estimating the statistical expectation of a physical response surface. This QoI is omnipresent in uncertainty propagation and design under uncertainty problems. Our hypothesis is that an optimal BODE should be maximizing the expected information gain in the QoI. We represent the information gain from a hypothetical experiment as the Kullback–Liebler (KL) divergence between the prior and the posterior probability distributions of the QoI. The prior distribution of the QoI is conditioned on the observed data, and the posterior distribution of the QoI is conditioned on the observed data and a hypothetical experiment. The main contribution of this paper is the derivation of a semi-analytic mathematical formula for the expected information gain about the statistical expectation of a physical response. The developed BODE is validated on synthetic functions with varying number of input-dimensions. We demonstrate the performance of the methodology on a steel wire manufacturing problem.

Funder

National Science Foundation

Publisher

ASME International

Subject

Computer Graphics and Computer-Aided Design,Computer Science Applications,Mechanical Engineering,Mechanics of Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3