Effect of Emulsified Water Droplet on Wax Deposition Path in Multiphase Transportation Pipeline

Author:

Zhao Yi1,Qi Xiangdong2,Wang Zhihua2,Ling Kegang3,Rui Zhenhua4

Affiliation:

1. Research Institute of Petroleum Engineering and Technology, Sinopec Northwest Oilfield Company, Urumqi 830011, China

2. Key Laboratory for Enhanced Oil and Gas Recovery of the Ministry of Education, Northeast Petroleum University, Daqing 163318, China

3. Department of Petroleum Engineering, University of North Dakota, Grand Forks 58202-6116, ND

4. School of Petroleum Engineering, Southwest Petroleum University, Chengdu 610500, China

Abstract

Abstract Although the problems of wax deposition in multiphase transportation pipelines have been addressed and wax deposition models have been developed in recent years, the complex wax deposition paths derived from the potential variety of flow regimes in multiphase flow have not been well understood. This study presented a method for characterizing wax crystals aggregation and developed a model for describing the wax deposition path in oil−water two-phase flows. The effect of the emulsified water droplets on wax crystals aggregation in shearing flows was identified using the polarized light microscopy and image analysis method. The role of the emulsified water droplets in the wax deposition path reaching the upper side and lower side of the pipeline wall was discussed by solving the developed model which involves the possible inclination angle of the multiphase transportation pipeline. The availability of the mechanistic model was validated by the data and knowledge in the existing literature. The results indicated that the circular degree and particle size of wax crystals showed a characteristic that it first increased and then decreased with the accumulation of emulsified water droplets in shearing flow, and this transition appeared to the phase inversion point of the oil−water two-phase. The wax deposition path was complex in multiphase transportation. The velocity for wax crystals depositing to the pipeline wall decreased, and the time for wax crystals depositing to the pipeline wall extended with the existence of emulsified water droplets. This behavior became remarkable when the dispersion stability of the oil−water two-phase enhanced.

Funder

National Natural Science Foundation of China

PetroChina Innovation Foundation

Publisher

ASME International

Subject

Geochemistry and Petrology,Mechanical Engineering,Energy Engineering and Power Technology,Fuel Technology,Renewable Energy, Sustainability and the Environment

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3