Parameter Identification of Cardiovascular System Model Used for Left Ventricular Assist Device Algorithms

Author:

Pawar Suraj R.1,Rapp Ethan S.1,Gohean Jeffrey R.1,Longoria Raul G.1

Affiliation:

1. Walker Department of Mechanical Engineering, University of Texas at Austin, Austin, TX 78712

Abstract

Abstract Advancement of implanted left ventricular assist device (LVAD) technology includes modern sensing and control methods to enable online diagnostics and monitoring of patients using on-board sensors. These methods often rely on a cardiovascular system (CVS) model, the parameters of which must be identified for the specific patient. Some of these, such as the systemic vascular resistance (SVR), can be estimated online while others must be identified separately. This paper describes a three-staged approach for designing a parameter identification algorithm (PIA) for this problem. The approach is demonstrated using a two-element Windkessel model of the systemic circulation (SC) with a time-varying elastance for the left ventricle (LV). A parameter identifiability stage is followed by identification using an unscented Kalman filter (UKF), which uses measurements of LV pressure (Plv), aortic pressure (Pao), aortic flow (Qa), and known input measurement of LVAD flowrate (Qvad). Both simulation and experimental data from animal experiments were used to evaluate the presented methods. By bounding the initial guess for left ventricular volume, the identified CVS model is able to reproduce signals of Plv, Pao, and Qa within a normalized root mean squared error (nRMSE) of 5.1%, 19%, and 11%, respectively, during simulations. Experimentally, the identified model is able to estimate SVR with an accuracy of 3.4% compared with values from invasive measurements. Diagnostics and physiological control algorithms on-board modern LVADs could use CVS models other than those shown here, and the presented approach is easily adaptable to them. The methods also demonstrate how to test the robustness and accuracy of the identification algorithm.

Publisher

ASME International

Subject

General Earth and Planetary Sciences,General Environmental Science

Reference29 articles.

1. Heart Disease and Stroke Statistics—2020 Update: A Report From the American Heart Association;Circulation,2020

2. Left Ventricular Assist Devices—Current State and Perspectives;J. Thorac. Dis.,2016

3. Identification Algorithm for Systemic Arterial Parameters With Application to Total Artificial Heart Control;Ann. Biomed. Eng.,1993

4. Minimally Invasive Estimation of Systemic Vascular Parameters;Ann. Biomed. Eng.,2001

5. Modeling, Estimation, and Control of Human Circulatory System With a Left Ventricular Assist Device;IEEE Trans. Control Syst. Technol.,2007

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3