Review and a Methodology to Investigate the Effects of Monolithic Channel Geometry

Author:

Depcik Christopher D.1,Hausmann Austin J.2

Affiliation:

1. e-mail:

2. Department of Mechanical Engineering, University of Kansas, 3138 Learned Hall, 1530 W. 15th Street, Lawrence, KS 66045-4709

Abstract

A typical monolithic catalyst consists of long, narrow, square channels containing a washcoat of catalytic material. While this geometry is the most common, other shapes may be better suited for particular applications. Of interest are hexagonal, triangular, and circular channel geometries. This paper provides a succinct review of these channel shapes and their associated heat and mass transfer correlations when used in a one plus one-dimensional model including diffusion in the washcoat. In addition, a summary of the correlations for different mechanical and thermal stresses and strains are included based on channel geometry. By including the momentum equation in the model formulation with geometry specific friction factors, this work illustrates a unique optimization procedure for light off, pressure drop, and lifetime operation according to a desired set of catalyst specifications. This includes the recalculation of washcoat thickness and flow velocity through the channels when cell density changes.

Publisher

ASME International

Subject

Mechanical Engineering,Energy Engineering and Power Technology,Aerospace Engineering,Fuel Technology,Nuclear Energy and Engineering

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3