Glucose Driven Nanobiopower Cells for Biomedical Applications

Author:

Rai Pratyush1,Ho Thang2,Xie Jining1,Hestekin Jamie A.2,Varadan Vijay K.1

Affiliation:

1. Department of Electrical Engineering, University of Arkansas, Fayetteville, AR 72701

2. Ralph E. Martin Department of Chemical Engineering, University of Arkansas, Fayetteville, AR 72701

Abstract

Power supply is an important aspect of micronanobiomedical devices. Implantable devices are required to stay inside of the body for longer period of time to provide continuous monitoring, detection, and therapeutics. The constricted areas of the human body, accessed by these devices, imply that the power source should not increase the payload significantly. Conventional on-board power sources are big, as compared with the device themselves, or involve wire-outs. Both provisions are liable to develop complications for sensor/actuator implant packaging. A plausible approach can be innovative solutions for sustainable bio-energy harvesting. Research studies have reported feasibility of miniature power sources, running on redox reactions. The device design, reported in this study, is a combination of nano-engineered composites and flexible thin film processing to achieve high density packaging. Of which, the end goal is production of energy for sensor applications. Both the bio-electrodes were successfully functionalized by amide bond cross-linkage between the carbon nanotube surface and the enzyme molecules: catalase and glucose oxidase for cathode and anode, respectively. The nanocomposite based biopower cell was evaluated as a steady power supply across the physiological range of glucose concentration. The power cell was able to deliver a steady power of 3.2 nW at 85 mV for glucose concentrations between 3 mM and 8 mM. Electron microscopy scanning of the functionalized electrode surface and spectroscopic evaluation of nanotube surface were used for evaluation of the biofunctionalization technique. Cyclic voltametric (CV) scans were performed on the cathodic and anodic half cells to corroborate bioactivity and qualitatively evaluate the power cell output against the redox peaks on the CV scans. The importance of these results has been discussed and conclusions have been drawn pertaining to further miniaturization (scale down) of the cell.

Publisher

ASME International

Subject

Electrical and Electronic Engineering,General Materials Science,General Medicine

Reference49 articles.

1. Power Sources for Implantable Cardiac Pacemakers;Parsonnet;Chest

2. Multisensor Silicon Needle for Cardiac Applications;Ivorra

3. Cell-Bionics: Tools for Real-Time Sensor Processing;Toumazou;Philos. Trans. R. Soc. London, Ser. B

4. An Implantable Microsystem for Tonometric Blood Pressure Measurement;Ziaie;Biomed. Microdevices

5. NeuralWISP: A Wirelessly Powered Neural Interface With 1-m Range;Yeager;IEEE Trans. Biomed. Circuits and Sys.

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3