Vibration Response of Elastic Disks in Surrounding Fluid: Viscous Versus Acoustic Effects

Author:

Jana Anirban1,Raman Arvind1

Affiliation:

1. School of Mechanical Engineering, and Birck Nanotechnology Center, Purdue University, West Lafayette, IN 47907-2088

Abstract

The vibrations of thin, elastic, circular disks such as musical cymbals, hard disk drives, and microscale resonators are significantly influenced by the presence of a surrounding fluid. The energy of disk vibrations is known to dissipate into viscous losses and to radiate away as sound. However, the relative importance of these mechanisms is not well understood. In this paper, we present three-dimensional computations of the fluidic impedance of thin, elastic disks vibrating with small amplitudes under ambient conditions. These computations encompass both macroscale and microscale disks, a wide range of operating frequencies, and different fluidic environments. Viscous fluidic impedances are computed using a finite element model, whereas acoustic fluidic impedances are computed using a boundary element method. For a disk with a given clamping ratio vibrating in a specific mode, the nondimensional viscous impedance depends on the unsteady Reynolds number, while the nondimensional acoustic impedance depends on the ratio of structural to acoustic wavelengths. It is shown that viscous losses dominate the fluid damping of disks in data storage and circular saw applications and of conventional disk microresonators. However, for ultrahigh frequency resonators, acoustic radiation must be taken into account to correctly estimate the overall fluid damping. The computed fluidic impedances are expected to be an important aid in the design of a wide range of disk resonators up to the megahertz regime.

Publisher

ASME International

Subject

General Engineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3